Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Estimating the age of heterotrophic respiration and its influence factors using radiocarbon

Atarashi-Andoh, Mariko; Koarashi, Jun; Liang, N.*; Takagi, Kentaro*; Kondo, Toshiaki*; Hirano, Takashi*; Teramoto, Munemasa*; Takagi, Masahiro*; Ishida, Sachinobu*; Ichii, Kazuhito*; et al.

no journal, , 

no abstracts in English

Oral presentation

Effect of artificial root exudates on the forest soil microbial community and nitrogen dynamics

Nakayama, Masataka; Tateno, Ryunosuke*

no journal, , 

Root exudates, carbon compounds secreted from plant fine roots, enhance nutrient cycles within root surrounding soil (rhizosphere) by stimulating microbial activities and growth. However, there is a lack of knowledge about the effect of the differences in the chemical composition of root exudates and the diversity of root exudates on the nitrogen cycle within the rhizosphere. Here, we investigated the impact of the differences in root exudates on the nitrogen cycles and microbial community using artificial root exudates (ARE). We added ARE from the simulated fine root and changed their diversity from 1 to 3 per incubation system. Soil microbial gene abundances varied among ARE types and diversity, but the differences were not statistically significant. In addition, there was a non-significant effect of ARE on nitrogen cycling processes. These results indicated that the diversity and compositions of root exudates did not affect the microbial community and nitrogen cycle for at least a short time.

Oral presentation

Effects of different parent materials of forest soils on heterotrophic respiration in the subsoil

Abe, Yukiko; Nakayama, Masataka; Tange, Takeshi*; Atarashi-Andoh, Mariko; Koarashi, Jun

no journal, , 

Soil is the largest carbon pool in terrestrial ecosystems, and forest soils in particular play an important role as a C reservoir in the global C cycle. Organic matter in the soil is released to the atmosphere as carbon dioxide through microbial decomposition (heterotrophic respiration). Decomposition of organic matter accumulated in the subsoil may contribute significantly to heterotrophic respiration, but it is not clear. Therefore, the objective of this study was to determine the heterotrophic respiration rate from the surface to the lower layers of forest soils with different parent materials. This presentation will report on the relationship between soil physicochemical and organic matter properties and heterotrophic respiration.

3 (Records 1-3 displayed on this page)
  • 1